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Abstract. We investigate the roots of Wills polynomials of convex
bodies. We study the structure, showing that the set of roots in the
upper half plane is a convex cone, monotonous with respect to the di-
mension. In particular, we give its precise description for dimensions
n = 2, 3. We also show that for n ≤ 7 this cone is completely contained
in the (open) left half plane, which is not true in dimensions ≥ 14. More-
over, we study the size of the roots of the Wills polynomial, bounding
them in terms of functionals like the in- and circumradius of the set.
We also relate the roots of the Steiner and the Wills polynomials.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the
n-dimensional Euclidean space Rn, and let Bn and Cn be the n-dimensional
unit ball and cube of edge-length 1, respectively. The volume of a set M (
Rn, i.e., its n-dimensional Lebesgue measure, is denoted by vol(M), and
with clM , conv M we represent its closure and convex hull, respectively.
For K ∈ Kn and a non-negative real number λ, the volume of the Minkowski
sum K + λ Bn, is expressed as a polynomial of degree n in λ,

(1.1) vol(K + λBn) =
n∑

i=0

(
n

i

)
Wi(K)λi.

This expression is known as the Steiner formula of K. The coefficients
Wi(K) are the quermassintegrals of K, and they are a special case of the
more general defined mixed volumes for which we refer to [21, s. 5.1]. In
particular W0(K) = vol(K), Wn(K) = vol(Bn) = κn, nW1(K) = S(K) is
the surface area of K and (2/κn)Wn−1(K) = b(K) is the mean width of K
([21, p. 42]). The volume of the n-dimensional unit ball Bn takes the value

(1.2) κn =
πn/2

Γ
(

n
2 + 1

) ,
where Γ denotes the gamma function.
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In [18], McMullen considered the normalized quermassintegrals

(1.3) Vi(K) =
(

n

i

)
Wn−i(K)

κn−i
,

and proposed to call these measures the intrinsic volumes of K, since, if
K is k-dimensional, then Vk(K) is the usual k-dimensional volume of K.
The intrinsic volumes depend only on the convex body K but not on the
dimension of the embedding space (see e.g. [2, s. 6.4]). Thus the Steiner
formula (1.1) can be represented via (1.3) as

vol(K + λBn) =
n∑

i=0

κiVn−i(K)λi.

In [25] Wills introduced and studied the functional

W (λK) =
n∑

i=0

Vi(K)λi

because of its possible relation with the so-called lattice-point enumerator
G(K) = #(K ∩ Zn). Many nice properties of this functional, as well as
relations with other measures, have been studied in the last years, see, for
instance, [3, 4, 19, 25, 26, 27]. More recently, the Wills functional has been
also considered from a more general point of view or in a probabilistic context
(see [13] and [22, 23], respectively).

In the following we will write, for K ∈ Kn,

(1.4) gK(z) =
n∑

i=0

Vi(K)zi =
n∑

i=0

(
n

i

)
Wn−i(K)

κn−i
zi

to denote the Wills polynomial of K, regarded as a formal polynomial in a
complex variable z ∈ C. Similarly, we will represent the classical Steiner
polynomial (cf. (1.1)) in a variable z ∈ C by fK;Bn(z) =

∑n
i=0

(
n
i

)
Wi(K)zi.

Notice that gK(z) (and hence its roots) does not depend on the dimension
of the space Rn where K is embedded, because the intrinsic volumes of K
have this property. Thus, from now on and unless we explicitly say the
opposite, we will always assume that for K ∈ Kn, its dimension dim K = n.

In [6, 7, 8, 9, 10, 11, 12, 16], geometric properties of the roots of (rel-
ative and classical) Steiner polynomials have been studied: their location,
size, relation with other geometric magnitudes (in- and circumradius) and
characterization of (families of) convex bodies.

Here we are interested in studying properties of the roots of the Wills poly-
nomial gK(z), as, for instance, its location or relation with other functionals.
To this end, we fix the notation which will be used along the paper. Denot-
ing by Re z, Im z and arg z, the real part, imaginary part and the principal
argument of a complex number z, respectively, let C+ = {z ∈ C : Im z ≥ 0}
be the set of complex numbers with non-negative imaginary part, and let

(1.5) RW (n) = {z ∈ C+ : gK(z) = 0 for K ∈ Kn} ∪ {0}
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be the set of all roots of gK(z), K ∈ Kn, in the upper half plane, plus the
origin; notice that gK(0) 6= 0 for any convex body K, since the constant
term of gK(z) is always 1 for all K ∈ Kn.

Theorem 1.1. RW (n) is a convex cone, containing the non-positive real
axis R≤0 and monotonous in the dimension, i.e., RW (n) ⊂ RW (n + 1).

Now, for a fixed convex body E ∈ Kn, let

θE = min
{
arg z : z ∈ C+, gE(z) = 0

}
and then we denote by

RW (E) =
{
z ∈ C+ : arg z ≥ θE

}
∪ {0}

the convex cone, in the upper half plane, generated as the positive hull of the
roots of the polynomial gE(z) and R≤0. Using this notation, we can precisely
describe the cones RW (2) and RW (3), which are given by the roots of the
Wills polynomial of the 2 and 3-dimensional unit balls, respectively. More
precisely, we have the following result.

Theorem 1.2. RW (2) = RW (B2) and RW (3) = RW (B3).

We observe that, in particular,RW (2) andRW (3) are closed convex cones,
but we do not know whether this holds in general.

Regarding the stability of the Wills polynomial, i.e., the fact that all its
roots lie in the left half plane, we study the inclusion

(1.6) RW (n) ⊂
{
z ∈ C+ : Re z < 0

}
∪ {0},

property that we call “weak” stability.

Proposition 1.1. Wills polynomials are weakly stable if n ≤ 7. For n ≥ 14
we have

{
z ∈ C+ : Re z ≤ 0} ( RW (n).

We also show that not all roots of gK(z) can be pure imaginary complex
numbers (see Proposition 2.1); Wills polynomials share this property with
Steiner polynomials.

The above results will be proved in Section 2, as well as some additional
properties and consequences.

Observe that several of the above properties present restrictions in the
dimension, in contrast with the known results for the roots of the general
relative Steiner polynomial ([9]). It is due to the fact that in higher dimen-
sion we do not have enough information about the so called “full system”
of inequalities among the quermassintegrals (cf. e.g., [2, Problem 6.1]).

Here we show an asymptotic relation between the roots of the Steiner and
the Wills polynomials. It will be shown in Section 3.

Theorem 1.3. For s ∈ N fixed, let K ∈ Ks and let µ1, . . . , µs be the roots
of gK(z). Embedding K ( Rn, n ≥ s, let γ1,n, . . . , γs,n be the non-zero roots
of fK;Bn(z). Then, reordering if necessary, it holds

lim
n→∞

κn

κn−1
γi,n =

µi

|µi|2
, i = 1, . . . , s.
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In a sense, this theorem is saying that for high dimensions n, the Steiner
polynomial fK;Bn(z) of a convex body K with fixed dimension dim K = s
“behaves as” its Wills polynomial gK(z).

We also consider the problem to relate the roots of the Wills polynomial
of a convex body K with other functionals, namely, the in- and circumradius
of K and the so called successive minima of K with respect to the integer
lattice. Section 4 is devoted to this topic; there we will state the precise
definitions and results.

Finally, in Section 5 we study a very particular Wills polynomial, the one
of the unit ball, which has interesting and nice properties.

2. The cone of the roots of the Wills functional

We start this section stating some preliminary lemmas which will be
needed for the proof of Theorem 1.1.

In [15, Theorem 5.2] the following result is proved.

Theorem 2.1. [15, Theorem 5.2] Let ξ(t) be an unordered n-tuple of com-
plex numbers, depending continuously on a real variable t in a (closed or
open) interval I. Then there exist n continuous functions µi(t), i = 1, . . . , n,
the values of which constitute the n-tuple ξ(t) for each t ∈ I.

As a consequence of it, we get the following lemma.

Lemma 2.1. Let K(t) ∈ Kn, t ∈ [a, b], be a one-parameter family of convex
bodies with dim K(t) = n for all t ∈ (a, b], dim K(a) = n − 1 and so that
K(t) varies continuously on t ∈ [a, b], and let gK(t)(z) be the corresponding
one-parameter family of Wills polynomials, t ∈ [a, b]. Then:

i) There exist n − 1 continuous functions µ1, . . . , µn−1 : [a, b] −→ C
joining the n− 1 roots of gK(a)(z) and n− 1 roots of gK(b)(z), such
that µ1(t), . . . , µn−1(t) are n − 1 of the n roots of gK(t)(z) for all
t ∈ [a, b].

ii) Moreover, there exists another continuous function µn : (a, b] −→ C
such that µn(t) is the remaining root of gK(t)(z) for all t ∈ (a, b],
verifying that limt→a+ µn(t) = ∞.

Proof. We take the polynomials g̃K(t)(z) =
∑n

i=0 Vn−i

(
K(t)

)
zi, t ∈ [a, b],

whose (non-zero) roots are the inverses of the roots of gK(t)(z) and have
leading coefficients 1 for all t ∈ [a, b]. Then the result is a direct consequence
of Theorem 2.1 and the fact that the roots of a polynomial are continuous
functions of the coefficients of the polynomial (see e.g. [17, p. 3]). �

Remark 2.1. It is also well-known (see e.g. [27, Proposition 3]) that if P is
an orthogonal box with edge lengths a1, . . . , an > 0, then the roots of gP (z)
are µi = −1/ai, i = 1, . . . , n. In particular, the Wills polynomial of the
n-dimensional cube of edge length a, gaCn(z), has an n-fold root µ = −1/a.

Now we can prove Theorem 1.1.
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Proof of Theorem 1.1. The inclusion RW (n) ⊂ RW (n+1) is a direct conse-
quence of the fact that intrinsic volumes remain unchanged if a convex body
K is embedded in any Euclidean space of bigger dimension.

By the homogeneity of the intrinsic volumes (see e.g. [2, p. 105]) we have
that for any K ∈ Kn and all λ > 0, gλK(z) = gK(λz). Hence, if µ ∈ RW (n),
µ 6= 0, there exists K ∈ Kn such that gK(µ) = 0 and so, for each λ > 0,

0 = gK(µ) = g(1/λ)K(λµ).

It implies that λµ ∈ RW (n). This, together with the fact that for the cube
gCn(z) = (z + 1)n (see Remark 2.1), shows that RW (n) is a cone containing
the non-positive real axis.

In order to prove the convexity of RW (n), we will proceed in two steps:

Step 1: First we show that if we consider the convex cone RW (Bn), deter-
mined by the roots of Bn and the non-positive real axis, then all its points
are roots of some Wills polynomial, i.e., RW (Bn) ⊂ RW (n). We proceed by
induction on n.

If n = 1, the result is obviously true, so, we suppose n > 1 and that
the cone RW (Bn−1) ⊂ RW (n − 1). Notice that we can assume the strict
inclusion RW (Bn−1) ( RW (Bn), otherwise we directly have the required
result.

For each t ∈ [0, 1], we consider the convex body K(t) = tBn−1 +(1− t)Bn

and its Wills polynomial gK(t)(z) =
∑n

i=0 Vi

(
K(t)

)
zi, and let µn be a root

of gBn(z) such that arg µn = θBn . Thus, we have a one-parameter family of
polynomials satisfying the conditions of Lemma 2.1, and hence there exists
a continuous map µ : [0, 1] −→ C with µ(0) = µn and µ(1) = µn−1 a root
of gBn−1(z), such that µ(t) is a root of gK(t)(z) for all t ∈ [0, 1]. We notice
that without loss of generality we may assume that µn is not the root which
“gets lost” because, otherwise, we can work with its conjugate µn.

Therefore f : [0, 1] −→ (0, 2π) given by f(t) = arg µ(t) is a continuous
function with f(1) = arg µn−1 ≥ θBn−1 and f(0) = θBn , and so, using
the intermediate value theorem, together with the fact that RW (n) (and
RW (Bn)) is a cone and the induction hypothesis, we can conclude that
RW (Bn) ⊂ RW (n).

Step 2: Finally we show that RW (n) is convex, for which it suffices to
prove that, fixed µ0 ∈ RW (n), µ0 6= 0, the cone

(2.1) RW (n) ∩
{
z ∈ C+ : arg z ≥ arg µ0

}
is convex. To this end, let K ∈ Kn, dim K = s, be such that gK(µ0) = 0,
and let K(t) = tBs +(1− t)K, t ∈ [0, 1]. Since dim K(t) = s for all t ∈ [0, 1],
gK(t) is always a polynomial of degree s, and thus (cf. Lemma 2.1) there
exists a continuous map µ : [0, 1] −→ C with µ(0) = µ0 and µ(1) = µ1 a
root of gBs(z), such that µ(t) is a root of gK(t)(z) for all t ∈ [0, 1]. Using an
analogous argument as before and since µ1 ∈ RW (Bs) ⊂ RW (s) ⊂ RW (n)
by Step 1, we obtain that the cone given in (2.1) is convex. �
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Before giving the precise characterization of the cones RW (2) and RW (3),
we study the stability of the Wills polynomial, since it will be needed in the
proof of Theorem 1.2. The main ingredient in order to do it are the well-
known inequalities

(2.2) Wi(K)2 ≥ Wi−1(K)Wi+1(K), 1 ≤ i ≤ n− 1,

and

(2.3) Wi(K)Wj(K) ≥ Wk(K)Wl(K), 0 ≤ k < i < j < l ≤ n,

particular cases of the Aleksandrov-Fenchel inequality (see e.g. [21, s. 6.3]).

Proof of Proposition 1.1. We use the following stability criterion (see [20,
Theorem 3] and [14, Theorem 1]): a real polynomial f(z) =

∑n
i=0 ai z

i, with
ai > 0 for i = 0, . . . , n, is stable if ai−1ai+2 ≤ β aiai+1, i = 1, . . . , n − 2,
where β ≈ 0.4655 is the only real solution of z(z + 1)2 = 1. It is easy to
check that (2.3) ensures that this criterion is fulfilled for n = 7. The weak
stability property for all n ≤ 6 follows from the monotonicity of the cone of
the roots (see Theorem 1.1).

Finally, it can be checked with a computer or by applying the Routh-
Hurwitz criterion (see e.g. [17, p. 181]) that the polynomial

gB14(z) = κ14

14∑
i=0

(
14
i

)
1

κ14−i
zi

has a root with positive real part (µ ≈ 0.04562+1.81036i). The non-stability
property for all n ≥ 14 is deduced again from the monotonicity of the cones
(see Theorem 1.1). �

So only in dimensions 8 ≤ n ≤ 13 we do not know whether Wills polyno-
mials may have roots with positive real parts. Obviously, by the convexity
of the cone RW (n), the existence of a root with positive real part implies
the existence of a pure imaginary complex root. However, not all roots can
be of that type. More precisely:

Proposition 2.1. There exists no convex body K ∈ Kn such that all roots of
gK(z) are imaginary pure complex numbers (excluding the real root existing
in odd dimension).

The proof of this result is similar to the one of the corresponding result
for the Steiner polynomial in [8, Proposition 2.1]. We sketch it here for
completeness.

Proof. By Proposition 1.1 all roots of gK(z) are contained in the (open) left
half plane if n ≤ 7, and so we may assume that n = dim K ≥ 8.

Let K ∈ Kn be a convex body, n even, such that all roots of gK(z) are
{±bj i, j = 1, . . . , n/2}, with all bj > 0. Then we get

gK(z) =
n∑

i=0

Vi(K)zi = vol(K)
n/2∏
j=1

(z2 + b2
j ),
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which implies V2i+1(K) = 0 for all i = 0, . . . , (n − 2)/2. In particular,
V1(K) = 0, i.e., dim K = 0, a contradiction.

For n odd, let K ∈ Kn be a convex body such that the roots of gK(z) are
{−a,±bj i, j = 1, . . . , (n− 1)/2}, with all a, bj > 0. Then

gK(z) =
n∑

i=0

Vi(K)zi = vol(K)(z + a)
(n−1)/2∏

j=1

(z2 + b2
j )

and, in particular, we have

vol(K) a

(n−1)/2∏
j=1

b2
j = 1, vol(K)

(n−1)/2∏
j=1

b2
j = V1(K), vol(K) a = Vn−1(K).

Thus we get the relation Vn−1(K)V1(K) = vol(K), which implies, by (1.3)
and inequality (2.3), that κn−1/κn ≥ n2/2. It contradicts the well-known
inequality

(2.4)

√
2π

n + 1
<

κn

κn−1
<

√
2π

n

(see e.g. [24, Theorem 5.3.2 and p. 216]) since n > 1. �

Next we come to the proof of Theorem 1.2 in which we characterize the
cones RW (2) and RW (3).

Proof of Theorem 1.2. We start determining the 2-dimensional coneRW (2).
Let −a + bi ∈ C+ be a root of a Wills polynomial gK(z) for some planar

convex body K ∈ K2. By Proposition 1.1 and Theorem 1.1 we may assume
that both a, b > 0. Thus gK(z) = vol(K)(z2 + 2az + a2 + b2), and we have
the identities 2vol(K)a = V1(K), vol(K)(a2 + b2) = 1, from which we get

vol(K) =
1

a2 + b2
, V1(K) =

2a

a2 + b2
.

Then, the isoperimetric inequality (cf. (2.2), i = 1) in terms of the intrinsic
volumes, namely, V1(K)2 ≥ πvol(K), yields

(2.5) b ≤
√

4− π

π
a.

If we have equality in (2.5) then equality in the isoperimetric inequality
holds, which implies that K is the Euclidean ball. Conversely, if K = B2

then gB2(z) = πz2 + πz + 1, whose (complex) roots give equality in (2.5).
Therefore, equality holds in (2.5) if and only if K = B2.

This together with the fact that RW (2) is a cone (Theorem 1.1) shows
that RW (2) = RW (B2) =

{
x + yi ∈ C+ :

√
(4− π)/π x + y ≤ 0

}
.

Now we consider the 3-dimensional case.
Since gB3(z) = (4π/3)z3 + 2πz2 + 4z + 1, it can be checked that

m0 = |tan θB3 | =
√

3(t− + t+)
t− − t+ + 2

√
π
≈ 0.9624,
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where t± =
(√

6π2 − 39π + 64±
√

π(π − 3)
)1/3.

Let −a+bi ∈ C+ be a root of a Wills polynomial gK(z) for some K ∈ K3.
By Proposition 1.1 and Theorem 1.1 we may assume that both a, b > 0 and
taking m = b/a, m > 0, we have to show that m ≤ m0. Let −c be the real
root of gK(z), c > 0. Then we have the identities

(2.6) (2a+c) =
V2(K)
vol(K)

, (a2+b2+2ac) =
V1(K)
vol(K)

, c(a2+b2) =
1

vol(K)
,

and using (1.3), inequalities (2.2) for i = 1, 2 yield, in terms of a, c,m,

i)
4
3
c2 +

(
16
3
− 2π

)
ac +

[
16
3
− π(1 + m2)

]
a2 ≥ 0,

ii)
[
4π − 8(1+ m2)

]
c2 +

[
4a(1+ m2)(π − 4)

]
c + πa2(1+ m2)2 ≥ 0,

(2.7)

respectively.
We assume m > m0. On the one hand it can be seen that, since c > 0,

inequality (2.7) i) is equivalent to

c ≥ c̃ =
a
(√

3π(4m2 + 3π − 12) + 3π − 8
)

4
.

On the other hand, a direct computation shows that the above condition on
m also implies that inequality (2.7) ii) holds if and only if

0 < c ≤ c̄ =
a(m2 + 1)

(√
2(πm2 − 3π + 8) + π − 4

)
2(2m2 − π + 2)

.

Hence, c̃ ≤ c ≤ c̄, which is a contradiction because it can be checked that
condition m > m0 gives c̄ < c̃. Therefore m ≤ m0, and using the convexity
of the cone RW (3) we get the result. Moreover, since equality in (2.2), i = 2,
holds only for the ball, an analogous argument to the one of the case n = 2
shows that equality m = m0 holds if and only if K = B3. �

Remark 2.2. From the above proof, it is also obtained that the ball Bn is
the only convex body such that one of the roots of gBn(z) lies on (determines)
the boundary bdRW (n)\R≤0, n = 2, 3.

3. Relating the roots of the Wills and Steiner polynomials

Let R(n) =
{
z ∈ C+ : fK;Bn(z) = 0 for some K ∈ Kn

}
denote the set of

all roots of the Steiner polynomial fK;Bn(z) in the upper half plane. In [8,
Theorem 1.2] and [9, Proposition 1.2] it is proved that

R(2) = R≤0,

R(3) =
{

x + yi ∈ C+ : x +
√

3 y < 0
}
∪ {0},

R(4) =
{
x + yi ∈ C+ : x + y < 0

}
∪ {0}.

A first direct observation from Theorem 1.2 is that clR(n) ( RW (n) for n =
2, 3. Moreover, it is easy to check that in dimension 4, the cone RW (B4) =
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{x + yi ∈ C+ : αx + y < 0}, α = 1.42224 . . . , and hence we also have the
strict inclusion clR(4) ( RW (B4) ⊂ RW (4). We cannot expect, however,
that clR(n) ( RW (Bn) for any dimension; indeed, it can be checked with a
computer or by applying the Routh-Hurwitz criterion that gB12(z) is weakly
stable, whereas the (weak) stability of the Steiner polynomial fails for n = 12
(see [6, Remark 3.2]).

For complex numbers z1, . . . , zr ∈ C let

si (z1, . . . , zr) =
∑

J⊂{1,...,r}
#J=i

∏
j∈J

zj

denote the i-th elementary symmetric function of z1, . . . , zr, 1 ≤ i ≤ r. In
addition we set s0 (z1, . . . , zr) = 1. Moreover, let γi, i = 1, . . . , n, be the
roots of the Steiner polynomial fK;Bn(z) =

∑n
i=0 κiVn−i(K)zi of K ∈ Kn.

From the identity
∑n

i=0 κiVn−i(K)zi = κn
∏n

i=1(z − γi) we get

(3.1) (−1)i κn−i

κn
Vi(K) = si (γ1, . . . , γn) .

Similarly, taking the Wills polynomial gK(z) with roots µi, i = 1, . . . , n,
from the relation

∑n
i=0 Vi(K)zi = vol(K)

∏n
i=1(z − µi) we get

(3.2) (−1)i Vn−i(K)
vol(K)

= si (µ1, . . . , µn) .

Then from (3.1) and (3.2) we easily obtain the following relations between
the roots of the Wills and the Steiner polynomials:

si

(
γ−1

1 , . . . , γ−1
n

)
= κi si (µ1, . . . , µn) and

si

(
µ−1

1 , . . . , µ−1
n

)
=

κn

κn−i
si (γ1, . . . , γn) .

However, just checking some easy examples, it can be seen that it is not
possible to get relations of the type γi = c(n)µi, for an n-dependent constant
c(n). Theorem 1.3 states a kind of asymptotic relation between them. For
the proof of this theorem we need the following lemma.

Lemma 3.1. Let k ≥ 0. Then

lim
n→∞

κn−k/κn

(κn−1/κn)k
= 1.

Proof. Stirling’s formula (see e.g. [24, Theorem 5.3.12] and [1, p. 24]) for
the gamma function together with (1.2) yield the asymptotic formula

lim
n→∞

κn(
2πe
n

)n/2 1√
nπ

= 1.
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Therefore we get

lim
n→∞

κn−k/κn

(κn−1/κn)k
= lim

n→∞

(
2πe
n−k

)n−k
2 1√

(n−k)π(
2πe
n

)n/2 1√
nπ


(

2πe
n

)n/2 1√
nπ(

2πe
n−1

)n−1
2 1√

(n−1)π


k

= lim
n→∞

(n− 1)k/2√n

nk/2
√

n− k

(n− 1)(n−1)k/2 nn/2

(n− k)(n−k)/2 nnk/2
= 1. �

Proof of Theorem 1.3. We observe that for any i = 1, . . . , s, µi is a root of
gK(z) if and only if µi/ |µi|2 = 1/µi is a root of g̃K(z) =

∑s
i=0 Vn−i(K)zi.

Thus it suffices to show that (reordering if necessary)

(3.3) lim
n→∞

κn

κn−1
γi,n = µ̃i, i = 1, . . . , s,

where µ̃i, i = 1, . . . , s, are the roots of g̃K(z).
Since dim K = s, the Steiner polynomial takes the form

fK;Bn(z) =
n∑

i=n−s

κiVn−i(K)zi = zn−s
s∑

j=0

κn−s+jVs−j(K)zj ,

and then, for any i = 1, . . . , s, γi,n is a (non-zero) root of fK;Bn(z) if and
only if the complex number γ̃i,n = (κn/κn−1)γi,n satisfies the relation

s∑
j=0

κn−s+j

κn

(
κn−1

κn

)j

Vs−j(K) γ̃j
i,n = 0,

or equivalently, dividing by (κn−1/κn)s, if and only if γ̃i,n is a root of the
polynomial

s∑
k=0

κn−k/κn

(κn−1/κn)k
Vk(K)zs−k = zs + V1(K)z +

s∑
k=2

βk,nVk(K)zs−k,

where for short we write βk,n = (κn−k/κn)/(κn−1/κn)k, k = 2, . . . , s. By
Lemma 3.1, the s − 2 sequences (βk,n)n tends to 1 when n goes to infinity,
which shows that the pointwise limit

lim
n→∞

(
zs + V1(K)z +

s∑
k=2

βk,nVk(K)zs−k

)
= g̃K(z).

This, together with the fact that the roots of a polynomial are continuous
functions of the coefficients, proves (3.3) and concludes the proof. �

From Theorem 1.3 we immediately get the following corollary, which
shows the asymptotic behavior of the (modulus and the argument of the)
roots of the Steiner polynomial with respect to the ones of gK(z).

Corollary 3.1. Let K ∈ Ks and let µ1, . . . , µs be the roots of gK(z). Em-
bedding K ( Rn, n ≥ s, let γ1,n, . . . , γs,n be the non-zero roots of fK;Bn(z).
Then the following properties hold:
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i) limn→∞ |γi,n| = ∞, i = 1, . . . , s.
ii) Reordering if necessary, limn→∞ arg γi,n = arg µi, i = 1, . . . , s.

Proof. Using (2.4),

lim
n→∞

|γi,n| = lim
n→∞

κn−1

κn

1
|µi|

≥ lim
n→∞

√
n

2π

1
|µi|

= ∞.

Property (ii) is straightforward. �

4. The roots of the Wills polynomial and other functionals

For K ∈ Kn, we denote by

r(K) = max{r : ∃x ∈ Rn with x + r Bn ⊂ K},
R(K) = min{R : ∃x ∈ Rn with K ⊂ x + R Bn},

the usual in- and circumradius of K. Since, up to translations, r(K)Bn ⊂ K
and K ⊂ R(K)Bn the following inequalities are a direct consequence of the
monotonicity of the mixed volumes (cf. e.g. [21, p. 277]):

(4.1) r(K)Wi+1(K) ≤ Wi(K) ≤ R(K)Wi+1(K),

for i ∈ {0, . . . , n− 1}.
We start this section bounding the roots of the Wills functional in terms

of the in- and circumradius.

Proposition 4.1. Let K ∈ Kn. Then the roots µi, i = 1, . . . , n, of the Wills
polynomial gK(z) are bounded by

(4.2)
1

V1(K)
≤ |µi| ≤

Vn−1(K)
vol(K)

.

Both inequalities are sharp. In particular, we have

1
2n

1
R(K)

≤ |µi| ≤
n

2
1

r(K)
.

Proof. It is known (see e.g. [17, p. 137]) that the roots of a polynomial∑n
j=0 ajz

j with real coefficients aj > 0 lie in the ring min{aj/aj+1} ≤ |z| ≤
max{aj/aj+1}, for j = 0, 1, . . . , n − 1. Hence in order to bound the roots
of gK(z) we have to find the minimum and maximum of Vj(K)/Vj+1(K),
j = 0, . . . , n − 1. Writing this quotient via (1.3) in terms of the quermass-
integrals, we get

Vj(K)
Vj+1(K)

=
j + 1
n− j

κn−j−1

κn−j

Wn−j(K)
Wn−j−1(K)

.

Aleksandrov-Fenchel inequalities (2.2) ensure that Wn−j(K)/Wn−j−1(K) is
increasing in j, and clearly j +1 is so. So we have to study the monotonicity
of κn−j−1/

(
(n− j)κn−j

)
in j.
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In order to do it, we consider the sequence ym = κm−1/(mκm). By (1.2)
and properties of the gamma function (see e.g. [24, Section 5.3]), it is an
easy computation to check that κm/κm−2 = 2π/m. Then

1
m + 1

κm

κm−2
=

1
m + 1

2π

m
=

1
m

κm+1

κm−1
,

and using Aleksandrov-Fenchel inequalities (2.2) for κm = Wm(Cn), we get

ym+1 =
1

m + 1
κm

κm+1
=

1
m

κm−2

κm−1
≤ 1

m

κm−1

κm
= ym.

Therefore, ym is a decreasing sequence in m, i.e., κn−j−1/
(
(n − j)κn−j

)
is

an increasing sequence in j. Thus, altogether we get

1
V1(K)

=
1
n

κn−1

Wn−1(K)
≤ Vj(K)

Vj+1(K)
≤ n

2
W1(K)
W0(K)

=
Vn−1(K)
vol(K)

for j = 0, . . . , n− 1, which shows (4.2).
We notice that for n = 1, any line segment gives equality in both inequali-

ties. Moreover, for any dimension, let Q(`) be the n-dimensional orthogonal
box with edge-lengths 1, `, . . . , `, ` ≥ 1, for which Vi

(
Q(`)

)
= si (1, `, . . . , `)

and µ1 = 1 is one of the roots of gQ(`)(z) (see Remark 2.1). Then

lim
`→∞

Vn−1

(
Q(`)

)
vol
(
Q(`)

) = lim
`→∞

`n−1 + (n− 1)`n−2

`n−1
= 1 = |µ1|,

which shows that the upper bound is sharp. Analogously, taking Q̄(`) the
n-dimensional orthogonal box with edge-lengths 1, `, . . . , `, ` ≤ 1, then

lim
`→0

1
V1

(
Q̄(`)

) = lim
`→0

1
(n− 1)` + 1

= 1 = |µ1|,

which shows that the lower bound is sharp.
The bounds in terms of the in- and circumradius follow immediately from

(4.1) (via (1.3)), taking into account that κn−1/κn ≥ 1/2 for all n ≥ 1. �

For the next proposition, we need to deal with a special kind of sets.
Tangential bodies can be defined in several equivalent ways; here we will
use the following one: a convex body K ∈ Kn containing a ball rBn is called
a tangential body, if it holds the equality W0(K) = r(K)W1(K) (cf. (4.1),
i = 0). The n-dimensional cube is an example of this type of bodies. For an
exhaustive study of the more general defined p-tangential bodies we refer to
[21, Section 2.2] and [21, Theorem 6.6.16].

Proposition 4.2. Let K ∈ Kn and let µi, i = 1, . . . , n, be the roots of the
Wills polynomial gK(z). If Re µi = −a, a > 0, for all i = 1, . . . , n, then

1
2R(K)

≤ a ≤ 1
2r(K)

.

Equality holds in the right inequality if and only if K is a tangential body.
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Proof. Using (3.2) for i = 1 and (1.3), we have

−na =
n∑

i=1

Re µi =
n∑

i=1

µi = −Vn−1(K)
vol(K)

= −n

2
W1(K)
W0(K)

,

and thus, with by (4.1),
1

2R(K)
≤ a ≤ 1

2r(K)
.

Finally, equality a = 1/
(
2r(K)

)
holds if and only if we have equality in

W0(K) ≥ r(K)W1(K), i.e., when K is a tangential body. �

Proposition 4.2 contrasts with the case of the Steiner polynomial, where
only the one of the ball can have all its roots with equal real part (in fact,
it has an n-fold real root).

Remark 4.1. From the above argument we also notice that
n

2R(K)
≤
∣∣Re µ1 + · · ·+ Re µn

∣∣ ≤ |Re µ1|+ · · ·+ |Re µn|.

In [27] Wills studied relations between the roots of the Wills polynomial
of a 0-symmetric convex body, i.e., such that K = −K, and its successive
minima, which we introduce next. Here we slightly improve some of those
relations.

We denote by Zn the integer lattice, i.e., the lattice of all points with
integral coordinates in Rn. For K ∈ Kn 0-symmetric, the i-th successive
minimum λi(K) of K, i = 1, . . . , n, is defined as

λi(K) = min
{
λ ∈ R : λ > 0,dim(λK ∩ Zn) ≥ i

}
.

Clearly 0 < λ1(K) ≤ · · · ≤ λn(K), and they are homogeneous of degree −1,
i.e., λi(αK) = (1/α)λi(K). As a general reference for lattices and successive
minima we refer to [2]. Here we show the following result.

Proposition 4.3. Let K ∈ Kn be 0-symmetric and let µi, i = 1, . . . , n, be
the roots of the Wills polynomial, ordered such that |µ1| ≤ · · · ≤ |µn|. Then:

i) λi+1(K) . . . λn(K) < 2n−i
(
n
i

)
|µi+1| . . . |µn|, i = 1, . . . , n− 1.

ii) λn(K) + (n− 1)r(K)n−1/ R(K)n ≤ −2(µ1 + · · ·+ µn).
Equality holds in (ii) if and only if K = Bn.

It improves items (d) and (b) in [27, Theorem 1], respectively.

Proof. In [5] the following sharp inequality was proved for a 0-symmetric
convex body K ∈ Kn:

λi+1(K) . . . λn(K)vol(K) < 2n−iVi(K),

i = 1, . . . , n− 1. This, together with (3.2), gives

λi+1(K) . . . λn(K) < 2n−i(−1)n−isn−i (µ1, . . . , µn) ≤ 2n−i

(
n

i

)
|µi+1 . . . µn|.
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On the other hand, the known Wills conjecture, proved independently by
Bokowski and Diskant, states that vol(K)− r(K)S(K)+(n−1)κnr(K)n ≤ 0
(see e.g. [21, p. 324] and the references inside). Taking into account that
λn(K) ≤ 1/r(K), because K ⊃ r(K)Bn, and also that vol(K) ≤ κnR(K)n

(cf. (4.1)), then using (3.2) we get the required inequality:

−2
n∑

i=1

µi = 2
Vn−1(K)
vol(K)

=
S(K)

vol(K)
≥ 1

r(K)
+ (n− 1)

κn

vol(K)
r(K)n−1

≥ λn(K) + (n− 1)
r(K)n−1

R(K)n
.

Since equality in Wills’ conjecture holds if and only if K is the Euclidean
ball, we obtain the same characterization for the equality case in (ii). �

5. A brief note on the Wills polynomial of the ball

The Wills polynomial of the ball verifies the nice property (see [26, (4.4)])

(5.1) i!κi g
(n−i)
Bn

(z) = n!κn gBi(z),

where g(k)(z) denotes the k-th derivative of a polynomial g(z).
We have also proved that the Wills polynomial of the ball determines

the cone of roots, i.e., RW (n) = RW (Bn), for dimensions n = 2, 3. In this
section we show some additional properties of this particular polynomial
gBn(z) and the cone RW (Bn).

Proposition 5.1. The Wills polynomial gBn(z) is weakly stable for n ≤ 13
and it is not for n ≥ 14. Moreover, RW (Bn−1) ( RW (Bn) if n ≤ 14.

Proof. Applying the stability criterion used in Proposition 1.1, it is easy
to check that gBn(z) is weakly stable for n ≤ 13, whereas the polynomial
gB14(z) has a root with positive real part (µ ≈ 0.04562 + 1.81036i).

Let n ≥ 14 be any positive integer such that the polynomial gBn(z) is not
weakly stable. If we assume that gBn+1(z) is weakly stable, then we have
conv

{
µ : gBn+1(µ) = 0

}
( {z ∈ C : Re z < 0}. The well-known Gauss-Lucas

theorem states that all roots of the derivative of a non-constant polynomial
lie in the convex hull of the set of zeros of the polynomial (see e.g. [17, The-
orem 6.1]). This result together with the fact g′Bn

(z) = (nκn/κn−1)gBn−1(z)
(cf. (5.1)) shows that gBn(z) is weakly stable, a contradiction. So, gBn+1(z)
is also weakly stable.

On the other hand, let Ā denote the set of conjugates of complex num-
bers in A ⊂ C+. Because of the (weak) stability of gBn(z), the cone
RW (Bn) ∪ RW (Bn) is convex for n < 14, and then it contains the set
conv

{
µ : gBn(µ) = 0

}
. Again, Gauss-Lucas’ theorem together with (5.1)

prove thatRW (Bn−1) ⊂ RW (Bn), n < 14. Numerical computations give the
strict inclusion. Finally, the non-stability of gB14(z) concludes the proof. �
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